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The general laws governing collisions between two rigid bodies when their displacements are subject to certain restrictions are 
discussed, and the legitimacy of using various mathematical models to descn~e such collisions is conskiered. Two types of constraint 
are discussed. The fin.it--bilateral constraints---are conditional on one or two points of the body being fixed. It is shown that in 
the presence of dry friction the impact may be of the cut-off type, that is, the contact stresses do not disappear. Conditions are 
obtained for cut-off i~apact in terms of the geometry of the fixed points. Another peculiarity of the collisions of bodies with fixed 
points is the change in the physical meaning of the coefficient of restitution: it depends on the configuration of the system. The 
second type is repre~mted by problems of impa_ct when there is a unilateral constraint---one of the bodies is supported on a 
massive base; it is sh(~Tn that dry friction at the point of support may lead to situations in which a solution is either non-existent 
or is non-unique, and which resemble the well-known Painlev6 paradoxes. The following conclusion is reached: for an adequate 
description of the phenomenon of constrained impact, allowance must be made for the compliance of the colliding bodies not 
only directly in the impact pair, but also at points of contact with other bodies. In the general case, the use of wave theory to 
descn'be constrained izapact creates immense mathematical ~ t i e s  and one must first work with simplified deformation models, 
which lead to systems of ordinary differential equations. Examples are considered, namely the impact of a physical pendulum 
on a wall and the Coriolis problem of colliding billiard balls. © 1997 Elsevier Science Ltd. All fights reserved. 

The collision of rigid bodies is an aggregate of different physical processes, allowance for all of which 
is hardly possible. In dynamics, the impact problem reduces to determining the impulses of the impact 
forces. Historically speaking, three approaches to the solution of this problem have evolved: classical 
stereomechanics, whose foundations were laid by Huyghens and Newton, the wave theory of impact, 
which emerged from the work of St Venant at the end of the last century, and the method of deformable 
elements, already employed by d'Alembert [1]. The choice of one method or another to solve a given 
problem depends, on the one hand, on how realistic and accurate the results must be, and, on the other, 
on the available o3mputing resources. 

Analogous approaches are used to solve the more complex and important practical problem of impact 
in a system of rigkt bodies. Worthy of mention among known results of a general theoretic nature is 
Appell's extension of Lagrange's equations to the case of a part of the variables in frictionless impact 
[2]. This approach, however, is not sufficient for a complete solution, and various additional assumptions 
are necessary even in the simplest cases. The stereomechanical approach [3] to impact problems in a 
system of connected bodies often assumes that the constraints imposed on the system are absolutely 
stiff relative to the stiffness of direct contact in an impacting pair. This assumption, however, may produce 
not only serious elTors but also, in some cases, non-unique solutions [4]. The logical flaw in that hypo- 
thesis is the differential treatment of different points of the same body: at one point, corresponding to 
impact contact, local deformations and energy loss are allowed, but at another, where the body is attached 
to other bodies, they are ignored. 

Compared with such an axiomatic approach, wave theory and discrete models do make allowance, 
to some degree or another, for deformations. Among the problems solved by these methods is the 
Bonssinesq problem of a rigid body colliding with a rod clamped at the opposite end [5]. 

1. E S T I M A T E  O F  T H E  I M P U L S E  I N  T H E  C O L L I S I O N  
O F  F R E E  R I G I D  B O D I E S  

Let Q and MQ denote the principal vector and principal moment of the active forces applied to a 
body, and F and Mr are the principal vector and principal moment of the reactions which occur on 
contact with other rigid bodies. The theorems on the motion of the mass centre and the variation of 
the angular momentum are expressed by the formulae 

m V = Q + F ,  ( J l / ) = M Q + M  r (I.I) 

t P r ~  Mat Mekh. Vol. 61, No. 3, pp. 355-368, 1997. 
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where rn is ' the mass, J is the central inertia tensor, V is the velocity of the centre of mass G and 11 is 
the angular velocity of the body. 

We will describe impact by the difference equations obtained from (1.1) by integration; it is assumed 
that the changes in the coordinates and the integrals of the "ordinary" forces are negligibly small [2] 

mAV = I, JAil  = M t (1.2) 

! f 

I = JF(s)ds, M l = ~MF(s)ds 
q~ to 

The most familiar problem involves the collision of two free rigid bodies with one contact point C. 
Letting F denote the impact forces exerted on the first body by the second, we can write Eqs (1.2) as 

mdtV i = I, m2AV 2 = - I ,  JtAt3h = GtC × I, J2At3t2 = -GzC x I (1.3) 

The number of variables may be reduced by two by using the formula for computing the tangential 
component Ft of the reaction 

t ' , = V - & n  (1.4) 

= (v, +a ,  × ( ; , c ) - ( v ,  ×c c) 

In these formulae n is the normal to the surfaces of the bodies at the point C, in the direction of the 
first body and Vc is the relative velocity at that point; the form of the function f depends on the nature 
of the friction. In particular, for absolutely smooth surfaces f=0,  and chy Coulomb friction is described 
by the following relation [6] 

_ 

Iv, l<-.tw., if v ,=o  
(1.5) 

where Vt and V n are the tangential and normal components of the relative velocity, and lg is the coefficient 
of sliding friction (to simplify matters, we will assume that it is equal to the friction coefficient at rest). 

Let us calculate the increment of the relative velocity using (1.2) and (1.3) 

AV c =AV I -AV 2 +AI~ ×GIC - M ~  2 xG2C = 
(1.6) 

=(m(' + m2')l+ J;I(GtC x I) x GIC + J2'(G2C x I) x G~C 

Expressing Eq. (1.6) in matrix form, we obtain 

2 I 
bij =~,(J~  (GkCxe i l ,GkCxe , )  (i , j=1,2,3) 

(1.7) 

where e/are the basis vectors and E3 is the identity matrix of order 3. 
Differentiating Eq. (1.7) with respect to the variable Z = In and using (1.4), we obtain a system of 

ordinary third-order differential equations for the impact, with initial condition Vc(t0) = V-. The 
properties of inte~al curves for the case of dry friction (1.5) have been discussed in [6-8] and elsewhere. 
To determine the time at which the impact ends, one must prescrl~oe a boundary condition, whose form 
depends on the model used for the contact stresses. 

In the classical theory, where no allowance is made for the deformation of the colliding bodies, the 
boundary condition involves the coefficient of restitution, which equals the ratio of the normal 
components of the impact impulse in the two phases of the impact [6]. The equations constructed above 
have an analytical solution in certain special cases (plane-parallel motion and the collision of two balls), 
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but in the genereJ case the numerical integration is necessary. Despite the fact that the model does not 
always agree with experiment [9-11], it is widely used in investigations of systems with impact. 

Discrete models of impact, including the method of deformable elements, are more realistic. The 
idea of the last-named method is to place an imaginary object of zero mass and diameter, satisfying a 
given stress-strain relationship F(~ (i), at the point of contact [1, 9]. The boundary condition then states 
that Fn is not ne~ative. To check that it holds, one has to solve the system obtained by differentiating 
Eq. (1.7) with re:spect to time 

Vc = BF (1.8) 

A weakness of this approach is that the function F(q, q) is undefined. 
The wave theory of impact, in which allowance is made for the deformations in the entire volume 

of the colliding bodies, is the most complicated approach. To verify the boundary condition Fn >~ O, 
one must solve a system of partial differential equations. The problem can be solved analytically only 
in exceptional special cases: the collinear collision of rods or rectangular plates [9, 12], but in the general 
case even numerical methods do not yield visible results. Some estimates have shown [13] that wave 
phenomena play only a minor role in the formation of the impact impulse in collisions of bodies with 
non-degenerate measurements. 

The different impact models share the property, proved below, that the impact impulse is bounded. 

Proposition 1. When two free rigid bodies with smooth or rough surfaces collide, the impulse satisfies 
the following upper estimate 

III ~< 21V-V~. (1.9) 

where ~. is the minimum eigenvalue of the matrix B in formula (1.7). 

Proof. The mat:fix B is symmetric and positive-definite, as follows from the corresponding properties 
of the inertia tensors Jk, and therefore ), > 0. 

The increment of total kinetic energy of the bodies is defined by Kelvin's formula 

A T = ~ ( V -  + V+,I) (1.10) 

where V- and V + are relative velocities at the point of contact at the beginning and end of the impact, 
respectively. Using (1.7), we obtain 

AT = (V,I)+ ~ (B I , I )  (1.11) 

In mechanical impact, no energy is released, and the kinetic energy does not increase 

AT-< 0 (1.12) 

In the space I ~= R 3 inequality (1.12) defines the interior of an ellipsoid passing through the origin, 
and this implies that the impact impulse is indeed bounded. The truth of estimate (1.9) on the boundary 
of this ellipsoid follows from the Cauchy-Bunyakovskii inequality. 

Corollary. When the collision between free rigid bodies is completed, there are no contact stresses. 
Indeed, otherwise the impact impulse would have to increase without limit. 

Remark. By analogy with Proposition 1, one can construct a lower estimate for the impact impulse. To that end, 
one uses the inequality (V +, n) ~> 0, where n is the unit vector normal to the surfaces of the colliding bodies at the 
contact point. Usinl~ formula (1.7), we deduce that 

(V-, n) .4- (BI, n) ~ 0 

Consequently 

where A is the maJdmum eigenvalue of B. 
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2. C O L L I S I O N  OF BODI ES  W I T H  F I X E D  P O I N T  

We will now investigate collisions of bodies with fixed points. In such cases, together with the impulse 
directly in the impacting pair, the imposed constraints exert impact reactions on the bodies. These 
reactions may be expressed in terms of I by using the conditions that the points at which the bodies 
are fixed do not move (the bodies are assumed to be absolutely rigid). Finally one obtains a relation 
similar to (1.7) 

AV e = B*I (2.1) 

The matrix B* is non-negative. Indeed, if we put V- = 0 in (1.10), the left-hand side will be the kinetic 
energy acquired by the bodies at rest owing to the impulse. Consequently 

(B*I,I)~ 0 (2.2) 

Unlike the case of collisions of free bodies, the matrix B* may be singular. This is because not every 
impulse will change the velocity of a body with fixed points. In that ease the right-hand side of (1.9) 
goes to infinity, and Proposition 1 is not applicable to the description of constrained impact. Situations 
exist in which such an impact has a cut-off nature: the relative velocity at the contact point disappears, 
but the contact stresses persist, that is, the colliding bodies are wedged together. From a formal point 
of view, the duration of a cut-off impact and the impact impulse are infinitely large. 

Examp/e. Consider a rigid body rotating about a fixed axis and colliding with a massive wall. The theorem on 
the variation of the angular momentum in impulsive motion [2] is expressed through the formula 

mp2Al~ = (OC x I, e)e (2.3) 

where p is the radius of inertia about the axis of rotation, e is a unit vector on the axis of rotation and O is a certain 
fixed point. Hence, using formula (1.4), we obtain 

AVc = AIIxOC= m-lp-2(e*,I)e *. e* = exOC (2.4) 

Choose unit vectors el and e2 on the surface of the wall and e3 orthogonal to the surface (in the direction of the 
first body), and let tzl, tz2 and ct 3 denote the coordinates of the vector e*. "Ransform formula (2.4) to the form (2.1) 
with 

HO~20~l~ 2 ~10~311 

lie,e3 a=a3 I[ 
(2.5) 

This matrix has two eigenvalues equal to zero, while the third is positive. Cut-off impact occurs under 
conditions of friction (1.5), provided the friction coefficient is large enough to ~revent the pendulum sliding on 
the obstacle in the direction opposite to the initial direction: ct31x >t (ot~ + ct~) ~.  

In this example, cut-off impact turns out to be possible because there are directions passing through 
the contact point and the fixed axis: an impulsive reaction acting in such a direction does not make the 
body move. Analogous considerations yield an easily checked necessary condition for the existence of 
cut-off impact in the general case of collisions of two bodies with fixed points. 

Let ~ ( / =  1, 2) denote the set of fixed points for each body. This set is a single point, a straight line 
or all of three-dimensional space, depending on the type of attachment. 

Proposition 2. The matrix B* in Eq. (2.1) is singular if and only if a straight line exists passing through 
the point C and intersecting both sets T1 and Y2. 

Indeed, a vector along such a straight line is obviously an eigenveetor of B*, corresponding to zero 
eigenvalue. 

Remark. System (2.1) was obtained on the assumption that the velocities of the fixed points vanish. This is the 
case for absolutely rigid bodies but not in deformable bodies. Nevertheless, in the latter case too, singularity of 
the matrix B* is a necessary condition for cut-off impact, since then, for sufficiently large values of the friction 
coefficient, the system has an equilibrium position with non-zero contact stresses. To determine whether this position 
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is attained under g~en impact conditions, one must set up the equations, adopt some model of the deformations, 
and integrate the equations. 

Another impc)rtant property of constrained impact is the changed meaning of the coefficient of 
restitution. In the classical sense, this coefficient, which is the ratio of the normal components of the 
impact impulse in the two phases of the impact, depends only on the materials of which the colliding 
bodies are made. To explain the dependence, observed in practice, of these coefficients on the shape 
of the bodies and the impact velocity, allowance must be made for contact deformations (see, e.g., [9, 
13]). This is all fine more necessary in constrained impact problems (in particular, in cut-off impact the 
coefficient of restitution is zero). 

A model which is sufficiently simple for analysis, through which the role of the elasticity of the 
attachment can be ascertained, may be constructed using deformable elements. 

The following example is instructive in that context. 

Examp/e. Conskler the two-dimensional problem of a pendulum impacting on a smooth walL We will assume 
that the pendulum and the all are absolutely rigid and that the suspension point O* is fixed but not necessarily 
identical with a point O fixed in the body. Let us mentally place a deformable element ~c at the point, of impact 
contact and an element ~o between the points O and O* (Fig. 1). 

To set up the eqlmtions of impulsive motion, we will take into consideration only principal terms, disregarding, 
in particular, the clhange in the orientation of the body during impact. Formulae (1.1) become 

m~/=F¢+F O, mp2~=GC×Fc+GO×Fo 

where p is the cenlrai radius of inertia and Fc and Fo are the forces in the deformable elements 

(2.6) 

(2.7) 

As the contact is tvailateral, we have Fo ffi 0 if (fo, n) <~ 0. In formulae (2.7), Ar denotes the displacement of the 
specified point and e the deformation. 

Together with EvJer's formula, Eqs (2.6) and (2.6) yield an eighth-order system of ordinaxy differential equations 
with initial and botmdary conditions 

m¢c =-(Fc+Fo)+p-2[GC(GC, Fc)-Fc(GC. GC)+GO(GC, Fo)-Fo(GO, GC)] 

m o=-(rc+Po)+O-2[OC(O0, Fc)-rc(C,O, OC)+OO(OO, Foj-ro(OO, GO)] (ZS) 
~.o(to)=~c(to)=O, ~o(to)=O, i~c(to)=-vc(t o) 

.)=0 
I f  the functions Fc and Fo are given, the solution of the impact problem reduces to into~ating system (2.8), 

which can be done in the general case only by numerical means. One then obtains the velocities Vc(t0 + ~) and 

f 0 

t 

Fig. 1. 
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Vo(t0 + ~) of two points of the body at the end of the impact. Hence one can determine the velocity distritration 
at all points of the body, by solving the algebraic system 

V0o.  )*a0o = vc(,o 
(2.9) 

v(,o * , ) * a ( , 0  + c.o = Vo(,o. 

The non-zero velocity at the suspension point indicates that the vt"orations in the vicinity of that point persist. 
These vibrations are rapidly damped, during which time the kinetic energy of the body decreases. The process 
may be viewed as rapid braking of the point O of the body. Thus, after impact, the body may again be treated as 
a pendulum. 

If 

Fc.LGO, 0 2 +(GO, GC)=0  (2.10) 

neither deformation nor impact re.action occurs at the suspension point [14]. 
Since the support is smooth, the first condition in (2.10)means that the suspension point is at the same distance 

from the wall as the centre of inertia. The second condition imposes a restriction on the position of the contact 
points. 

I f  at least one of conditions (2.10) does not hold, the solution of the problem of an impacting pendulum requires 
numerical integration of system (2.8). This yields the quantities ¢~(t0 + ~), I~cn(to + "¢) and ¢.~(to + "¢) = O. 
One can then calculate the velocity dism'bution at all points of the body by solving system (2.9), which in this case 
is 

V~n +(GC, t)f~ = VC. =-¢ 'c . ( t  o + t )  
_ P v~. +(GO. t ) t ~ -  Vo. = -eo.( to + ~) 

Vet - (GO, n)t2 = rot = -~b,(t0 +~) 

(2.11) 

where n and t are vectors normal and parallel to the surface of the obstruction. 
The solution has the form 

Q(t 0 +~)=[~ba(t0 + x ) - ~ n ( t 0  +x)]/ [(GC, t ) - (GO,  t)]  

V~t = (GO, n)t2-ebt(t0 +x), V6. = - (GO,  t ) t2-~bn( t  0 +x) 
(2.12) 

Since the wall is absolutely smooth, Eqs (2.8) do not involve the variable ect; in addition, since the vectors OG 
and Fc are orthogonal, it follows that ~ == 0. Therefore, the order of system (2.8) can he reduced to four and it 
may be written as 

2)-o,c.(,+p 2). o=c,,c2 
eon(to)=Ecn(to)=O, E~Tn(t0)=0, 8~n(t0)=l,  I~cs(t0+t)=O 

Figure 2 shows graphs of the relative energy loss AT~To as a function of the ratio of the stiffnesses o for two 
values of the parameter p. Computations show that for p = 0.5 maximum loss occurs at o = 1 (about 36% of the 
total kinetic energy of the pendulum); when p = 2, this again occurs at o = 1 (about 53%). At p values in the 
intervals (0, 0.3), (0.7, 1.4), (3, +-0) and o E (0, 5), the energy loss is at most 15%. 

(2.15) 

The dissipation of energy as the point O comes to a stop is calculated by formulae (1.10) 

AT =-~(Vo2t + VO2n)+ ~[(GO, n)Vot-(GO, t)Voa ]2/p2 o (2.13) 

where P0 is the radius of inertia of the pendulum about the suspension point. 
Let us consider a special case of this problem when m = 1, I GO I = 1, I G'C I = 1 (in which case (GO, C_.C) = 

-1), I GG' I = I OO' I, where G' and O" are the projoctions of the points G and O, respectively, onto the obstruction 
(see Fig. 1). The characteristics of the deformable elements are assumed to be linear, as we set 

Fc = q (Sc, n)n, F o = c2s O (2.14) 
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3. COLLISION IN THE CASE OF AN IDEAL 
UNILATERAL CONSTRAINTS 

Another type of constrained impact problem arises when the system involves unilateral constraints. 
We will fimit the discussion to the simplest case, namely, the collision of two rigid bodies, one of which 
is free and the other in contact at a point A with a fixed surface (at the starting time of the impact the 
body may be at rest, rolling along the surface or sliding along it). 

Denote the reaction of the support by F*. By analogy with (1.3), the equations of impulsive motion 
are as follows: 

mlAVt = I, J i A ~  = G I C × I  

m2AV 2 = - I  + I*, J 2 A ~  = -G2C × I + G2A × I* (3.1) 

whereA is the point of contact with the support. The fact that the constraint is unilateral is represented 
by the inequality 

(F*, N) ~> 0 (3.2) 

which states that the normal component of the reaction of the surface is non-negative (N is the normal 
atA). Inequality (3.2) means that the body does not adhere to the surface. 

The single equation (3.2) is, of course, insufficient to determine the reaction of the plane as a function 
of F; certain additi~onal assumptions are necessary. In the classical approach, one assumes [2, 15] that 
the normal component of the acceleration atA must be non-negative, the existence of a non-vanishing 
reaction at that point indicating that the contact is maintained 

(*A,N) ~>0, F*(*A,N)---0 (3.3) 

The equality in (3.3) is often referred to as the complementarity condition. 
By specifying the nature of the friction at the points A and C, one obtains a model of constrained 

impact of absolutely rigid bodies. 
We will now di~,a~s the suitability of that model for solving problems in mechanics. 
"l]ransform system (3.1) as follows: 

VA = BAF* - ~ r  

BF = m~lF + j~l (G2C × F) × G2A, BAF* = m~lF * + j~I(G2A × F*) × G2A 
(3.4) 

The matrix B is as defined in (1.7) and the prime denotes transposition. Note that BA is symmetric 
and positive-definil~e. 

Evaluate the scalar product of both sides of the second equation in (3.4) by N 

('CA, N) -- (BAF*,N)- (BF, N) (3.5) 
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Let us assume that the surface is absolutely smooth, that is, the tangential component of the reaction 
at A vanishes (when that happens there may be friction at the point C of contact between the bodies), 
i.e. F* = F~N. Then Eq. (3.5) may be written as 

(VA,N)fCt+~F~, a = - ( B F ,  N)I [ i f ( B A N , N )  (3.6) 

The fact that the coefficient fl in Eq. (3.6) is positive guarantees the uniqueness of a solution satisfying 
conditions (3.2) and (3.3). The solution is 

F~ = max{0, - a / ~} (3.7) 

By the definition of the coefficients a and [3, F~ is a piecewise-linear function of F; substituting (3.7) 
into the first formula of (3.4), we obtain 

5BF, if a>-'0 B*F=BF-[3-1(BF, N)B'N (3.8) 
*c=[B'F ,  if a < 0 '  

The matrix B* is symmetric and positive-definite. Indeed 

(B'F,  F) = (BF, F) - ~-i  (BF, N)  2 = m/-I F 2 + ( J l  i (GIC x F), GIC x F)  + 

+[~-1 {[m~| + (j~l (G2A × N),G2A × N)~m~ ! F 2 + (J~l (G2C x F),G2C x F) I -  

m~IFN + (J~l (G2C x F), G2A x N)] 2 t >~ roll F2 -[ 

(B'u, v) = ( k , v ) -  ~-m (~n,N)(~'N,v) = (B*v,u) 

By analogy with Proposition 1, one can prove the following. 

Proposition 3. In the impact of two rigid bodies with smooth or rough surfaces, one free and the other 
touching a smooth massive support, the impulse has an upper limit as in (1.9), where ~, is the minimum 
eigenvalue of the matrices B and B* in formula (3.8). 

Hence it follows that on completion of constrained impact of the type considered, the contact stresses 
at the point C vanish. 

To solve the impact problem one can apply the scheme considered in the previous section: given the 
friction law at the point C, one transforms system (3.8) to a new independent variable X and integrates 
the system for the given initial data. When that is done, the boundary condition is determined using the 
coefficient of restitution (recall that system (3.8) was obtained in the context of tbe classical impact theory). 

Examp/e. The problem of the collision of two balls on a billiard table was solved in [16], allowing for fi'iction 
among the balls but disregarding friction between each of the balls and the cloth. The complementarity condition 
(3.3) was not used; instead, it was assumed that the direction of the relative velocity V¢ remains unchanged during 
the impact. We will investigate that system using the method described above (incidentally justifying the approach 
itself, that is, showing that the impact reaction of the table to one of the balls is identically zero). Without loss of 
generality, we will assume that the projection of the vector V- onto the vertical N is negative (otherwise, one need 
only change the numbering of the balls). 

"l]ddng the vectors n, N x n and N as an orthonormal basis, we have 

GIC=-G2C=(R,O,O), G2A=(0,0,-R), Jl f J2 fmp2E3 

where R is the radius of each ball and p is the radius of inertia (for a homogeneous ball, p2 = 0.4R2). The matrices 
B in formula (1.7) and BA, B in (3.4) may be expressed as follows: 

2 R 2 R 2 
B = ~diag{l,-~"+ !, 7 +  1 t • 

1 0 -R2ip2 I f ~ f Z o  l 
m~0 0 

2 .. [ R 2 . R 2 . 11 
0.9) 
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By assumption, we have FN > 0 at the starting time, and therefore the first ball experiences no impact reaction 
from the table. In addition, (x = - F ~ m  < 0 and, by formula (3.8), the change in relative velocity a t the  point C is 
determined by the matrix 

, 2 R 2 R 2 
B =  ~diag{2,  2-~-+2,  2 ~ - + 1 }  0.1o) 

The sliding friction is described by the first of formulae (1.5) 

,,=(, ,..,( ,.:+ v:+ ,.: ),. 
Vt = (Vc, n), V:, = (Vc, NXn), V3 = (Vc, N) 

(3.11) 

Changing in system (3.8) to the independent variable Z = In, we write it as follows for the case of homogeneons 
balls (the prime denotes differentiation with respect to Z) 

mV i' = 2, mV 2 : -71.tV2 (V22 + V32 ) - ~ ,  mV 3 = -7p.V3(I/22 + V32 ) -~  (3.12) 

Now transform system (3.12) to polar coordinates r, 9, setting V 2 --~ r sin q), V 3 = r cos (p (thus, the quantity r 
equals the absolute value of the tangential component of the relative velocity of the balls at their point of contact 
and (p is the angle between that component and the vertical) 

r'cos(p - r~p'sin ~p = --6 ~-~- cosq) ,  
m 

r'sin ¢p + r~'cos q) = -7---~ sin 9 
m 

Hence, finally 

, 2 r ' = - t t ( 6+s in2 (p ) '  rg '=  7m Vj = - - ,  - ~tsin2~0 (3,13) 
m m 

As is obvious front the third equation in (3.13), the angle q) remains constant in two cases only: q) : _+g (the 
relative velocity vector lies in a vertical plane containing the centres of the balls; this happens, in particular, in 
direct impact of a b~l rolling without sliding over a fixed ball) or q) = --.~d2 (the relative velocity vector is horizontal). 
In the general case, the angle q) increases in absolute value, so that the vector V¢ tends to occupy the position 
opposite to N. When that happens, Fjv > 0, and then (x < 0 in (3.6), and Eqs (3.13) describe the evolution of the 
impact up to its completion. On the basis of these equations, one can draw certain qualitative conclusions as to 
the nature of the impact. 

First, the quantity t '  is negative. Consequently, relative sliding of the balls will always slow down and, once halted, 
does not recur. SecoVLd, at the instant sliding halts (if it does) one has (p = --.x, that is, the vector Vc points vertically 
downward. 

The solution of s~;tem (3.13) may be reduced to quadratures. To that end, divide the second equation by the 
third and integrate the resulting equation with separated variables. The result is 

r -  cos  

-r°Lsin o ) L ces o) 
Substituting (3.14) into the third of formulae (3.13), we get an equation from which 9 may be found as an (explicit) 

function of I,. The fiJst equation enables one to determine I ,  from the boundary condition 

_ ! + e  V.- 
V . - - - T -  . 

where e is the coefficient of restitution. 
We have thus consU-ucted a solution of the Coriolis problem in closed form. 
The following condnsion can be drawn: the problem of the impact of two rigid bodies in the presence of an 

additional ideal unila'teral constraint has a unique solution satisfying conditions (3.2) and (3.3). 
Whether this solution is realistic can be verified through a simple experiment. 
Place one of the bedls at the rim and hit it with the other at the point antipodal to the rim (instead of billiard 

balls, one can use a pair of coins on a smooth table, one of which is touching the wall). By the second condition 
of 0.3),  the originally immobile ball should remain immobile. In practice, the outcome is different: the ball moves 
away from the rim. 
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This result may be obtained by making allowance for elastic deformations on impact. To that end, one can place 
deformable elements at the points of contact of the two balls and of the ball with the wall, and set up the differential 
equations of impulsive motion, as was done in the previous section (see also [14]). Numerical computations for 
the elastic impact of two identical balls on a substantially more rigid wall lead to the following result: the rebound 
velocity of the uncoming ball is about 96% of its initial velocity V, while the originally motionless ball recoils from 
the wall at velocity 0.28V. 

Experimental verification of the solution of the Coriolis problem is difficult, since the coeffacient of friction between 
billiard balls is extremely small (according to the data of [16], it is approximately 0.03). Numerical solution based 
on the method of deformable elements shows that the direction of the slip velocity may in general vary. Consequently, 
the hypothesis proposed in [16] is not confirmed. 

4. COLLISION OF BODIES ONE OF W H I C H  RESTS 
ON A R O U G H  SURFACE 

Unlike the problem considered in Section 3, which has a unique solution in classical impact theory, 
the problem of a rigid body colliding with a body in contact with a rough support is in certain cases ill 
posed. This paradox is analogous to the well-known paradox of Painlev~ in systems with dry friction 
[17]. To understand the nature of the paradox, we will try to set up an equation analogous to (3.8), 
assuming dry friction of type (1.5) in the support, with coefficient g* 

. V r  
rr=-  m--iF , if Vr 0 

IVrt (4.1) 

]rT[<-  'FN, if = 0  

The subscripts N and T indicate the normal and tangential components of the vector at the point A. 
We must consider four possible types of motion of that point. 

1. The body becomes detached from the surface, as represented by relations F* = 0, (Va, N) > 0. In 
this situation, because of (3.6), the coefficient ct is positive. 

2. As the body rolls on the surface, we have conditions Va = 0, Va = 0, F~, I> 0, I Frl ~ g*F~,. Equating 
the right-hand side of the second formula in (3.4) to zero, we obtain 

BAF* = BF ( 4 . 2 )  

By definition, BA is symmetric and positive-definite, and so Eq. (4.2) has a unique solution F* = BXIBF. 
3. If the body slides along the support, i.e. Vr * 0, then 

:=v;,=; l=N-.*=,, eT=W/IVTI (4.3) 
Substituting (4.3) into formula (3.5), we obtain an equation of type (3.6) in which a remains unchanged 

but 

= (BAI, N) (4.4) 

4. A transition from rolling to sliding in the direction er occurs when the following conditions hold 

F N ~> 0, xeT = F~,BA(N-~t*eT)-BF (4.5) 

where x is a positive number. Here the right-hand side is the quantity V, evaluated by formula (3.4), 
taking (4.3) into account. The vector equality (4.5) contains three unknown quantities: x, FJ  and the 
angle between er and n; in principle, therefore, the problem of determining the direction of sliding 
may have a unique solution. 

We will now ascertain which of the above types of motion may take place in given impact conditions. 
Let us first assume that the second body is sliding along the support at the starting time. If the coefficient 
(4.4) is positive, Eq. (3.6) has a unique solution (3.7) (depending on the sign of ~, one obtains cases 1 
and 3). If [3 < 0, Eq. (3.6) has no solutions compatible with (3.3) (if ot < 0), or two such solutions at 
once (if ¢z > 0). 
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If  there is no slip at the point A, then, apart from the cases in which a unique solution of  the first, 
second or  third t)l~es , exist solutions of  all these types may exist simultaneously. This situation is 
analogous to the paradoxes of  the motion of  a rigid body on a rough support, as considered for two 
dimensions in [18], where conditions for the problem to be well posed were derived. 

Without going into the details of  the rather lengthy analysis, we merely remark that the problem just 
discussed cannot always be solved within the context of  classical impact theory. In order  to resolve the 
paradoxes, one must drop conditions (3.3) and construct an impact model that takes the deformations 
at both points A ~md C into account. Analysis of  such models shows that in the paradoxical situations 
when the solution :is not unique, the body actually detaches from the support; in such cases the impact 
impulse at the point C may be computed by methods of  stereomechanics. As to the case in which there 
are no solutions compatible with (3.3), one cannot avoid making allowance for the deformations. 

Example. Let us consider the impact of a rolling billiard ball with a stationary ball, taking into account the 
roughness of the balls and the table. This problem was considered in [19] using the complementarity condition 
(3.3), in relation to Coriolis' hypothesis that the direction of sliding at C is invariant. As remarked in the previous 
section, these assumptions are compatible only in the simplest special case of direct impact. 

Let us consider the situation using the scheme described previously (that is, without using Coriolis' hypothesis). 
At the start of the impact the quantity (z = -FN/m is negative, and Va = 0. Depending on the value of I~*, the 

second ball will slide along the support (the fourth case) or roll along it (the second case). Computations show 
that contact with the support in all cases 2--4 requires that F~ = F 3. In rolling F~I = 2/7F1 - 5/7F3, ~ = 2 / 7 F  2, and 
moreover (it*F~) 2 >~ Fl*2+ F[ 2. 

Sliding occurs if the last inequality is inverted, and in that case the initial direction of sliding is opposite to that 
of the vector (2/7F1 -. 5/7F3, 2/7F2, 0). 

In sliding, by (4.3), one has F* = F3I. 
In this example ~ = 1/m > 0, and therefore the problem of determining F* as a function of F has a unique solution. 
Compared to the case of a smooth support, examined in the previous section, the present problem has an 

essentially new property: the relative acceleration at the point of contact C of the balls depends not only on F but 
also on the relative velocity at the pointA of contact of the second ball with the table. In particular, if sliding occurs 
atA, Eqs (3.4) hold, with F* = F3I. The equation for the normal component of the velocity Vc can be separated 
out, and the remaining non-finear fourth-order system may be transformed to polar coordinates, setting (as before) 
;/2 = r sin 9, I/3 = r cos 9, and also eT = (r* cos ~, r* sin ~, 0). We finally obtain 

mr" = - g  ( 6 + sin 2 q~ ) + gt~t* cos q~( ~ cos ~ cos cO - sin g sin q~ ) 

t . * =-Itsm¢cos¢- . cos¢( cos  in¢+singcos¢) 
(4.6) 

* s mr*'= 7p. ~tcos 9 -  cos~-l~(~cos~cos(p- sin~sin~0) 

mr*~'=sin~ +li(cos~sinql+~sin~cosqJ) 

Let us see under what conditions the angle (p remains constant (that is, Coriolis' hypothesis is valid). The right- 
hand side of the secolad equation of (4.6) vanishes in three cases: cos q~ = 0 (direct impact), It = 0 or 

sin q) + It* ( ~  cos ~ sin (p + sin ~ cos (p) = O (4.7) 

For (4.7) to hold v,~ith It* ~ 0, the angle ~ must also remain constant. This gives a system of the two equations 
(4.7) together with ~" = 0 (the derivative is evaluated from the fourth equation of (4.6)) to determine the values 
of q) and ~ for such friq~ion coefficients. The constants It and It* occur linearly in this system. Hence it follows that 
to each pair of values ,p and ~ for which the expressions in parentheses in the equations of the system do not vanish 
there corresponds a pair of values It and It* for which the direction of sliding between the balls remains unchanged 
during impact. Thus, l~he algebraic solution obtained in [19] only holds in certain exceptional special cases. 

In particular, if It = It*, the desired property is obtained both in direct impact and in impact such that cos q~ = 
-2/(7it), provided thai: It > 2/7 (in which case ~ = 9). 

Apart from these e~ceptions, the direction of the impact is not conserved, and numerical integration is needed 
to solve system (4.6). 

The above problem may be solved in the context of the classical theory, which cannot be said of the following 
simple example. 

Eaamples. 1. Let us investigate the plane collision of two bodies (plates) on the assumption that there is no friction 
at their point of conta(~ We introduce a Cartesian system of coordinates OXYin such a way that the support plane 
is described by the equationy = 0, and we denote the coordinates of the vectors as follows: 

GiC=(al,bl), G2C=(a2,b2), G2a=(a3,b3), b3<O 
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The matrices defined in (1.7) and (3.4), which define the impact scenario, have the following expressions 

H-alot 

m2BA = E2 +p22[[11-33 ~ b  -a~b3 u ' 

-alblH+ -1^-21 b2 -a2b21 
a2 ~ m2 v2 I-~,~,,: a22 

~-a2b3 a2a3 U 

We shall assume that the normal n is horizontal (Fig. 3). 
We first assume that at the start of the impact the second body is sliding to the right along the support (in that 

case F* = 0); by formula (4.4), 

2 2 2 m2P2[~ = a3 +P2 +l-t*a3b3 (4.8) 

The quantity 13 in this formula may be negative, if a 3 > 0 and the friction coefficient is large enough. Under our 
assumptions F = ~/n, ¥ > 0, so that in formula (3.6) we have ot = 3~n2-1p2-2a362 . Consequently, if b2 > 0, Eq. (3.6) 
has two solutions, while if b2 < 0 it has none. 

Now suppose that at the starting time "CA = 0. Computations show that if 

a3<0,  b 2<0,  ~ < 0 ,  "'[p2+b2b3j-b3a2 p'* 
(p2 +b~)+a3b 3 
2 2 <0 

P2 +a3 + I~*a3b3 

motion of each of the three types 1, 2 and 4 is possible. 
2. As regards problems of bipedal locomotion, some authors [4] have discussed a system consisting of two hinged 

rods ("legs") stepping alternately on a rough supporting surface (Fig. 4), and proposed looking for a solution using 
the complementarity condition (3.3). This has resulted in paradoxical situations, analogous to those discussed above. 
Although the system is somewhat different from those considered in this section, it can be investigated in a similar 
way and an equation of the type (3.6) obtained. The paradoxes arise when 13 < 0. 

"lb resolve these paradoxes, one can use the method of deformable elements. The result is as follows: In the 
nnon-uniqueness cases, one has separation from the support (F* N = 0). Cases in which the classical model produces 

o solution are not exceptional when allowance is made for deformations, but they do possess a specific property: 
however small the ratio ml/m2, the deformations at the point A are not small. Qualitatively speaking, the situation 
is the same as in the case of "tangential impact" [17]: the impact at A is due to non-correspondence of the tangential 
velocities rather than normal ones. After such an impact the second body rebounds from the supporting surface 
("the fly overturns the elephant"). 

This research was ca rded  out  with financial support  f rom the Russian Foundat ion  for  Basic Research 
(96-01-01440). 
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